
Automated in-situ defects detection in powder bed metal additive 
manufacturing parts 

 
 

Additive manufacturing (AM) is the ability to deposit materials layer-by-layer or point-by-point 
to fabricate complex components directly from computer-aided design models. Although AM 
technologies have demonstrated the ability to fabricate complex geometries capable of 
achieving improved performance characteristics, few AM components are currently being used 
in production environments, mainly due to the challenges and costs associated with the 
certification and qualification of components. The current state of the industry is to certify 
components by using expensive methods such as computed tomography or mechanical testing, 
but their cost is working against the business case for AM components.  An alternative method 
is to take a data driven approach to fully understand how the series of interconnected material 
deposition/melting events results in specific spatial material properties and/or defects. This 
imposes to create first a digital twin of the additive part as we built it using in-situ 
measurements and then to use data analytics techniques to learn from such data. This concept 
is the foundation of the Data Analytics Framework for Manufacturing that the ORNL 
Manufacturing Demonstration Facility (MDF) is actively developing to address the certification 
and qualification problem. 
 
As part of this framework, the proposed data challenge focuses on the detection of specific 
defects in parts manufactured using an electron beam powder bed system, the ARCAM Q10 
machine, (http://www.arcam.com/technology/products/arcam-q10/). To understand how the 
powder bed melting process works, please refer to this video: 
https://www.youtube.com/watch?v=M_qSnjKN7f8). For this challenge we are mainly 
interested to quantitatively assess the geometric accuracy of the part and the presence of 
failure points such as porosity, swelling, cracks, delamination, and lack of fusion. The 
importance of detecting defects in-situ is twofold: (1) detected early they can eventually be 
corrected on the fly with a feedback loop control mechanism, hence insuring a higher 
manufacturing success rate; and (2) these defects 
can be used as criteria to discard or to accept a 
part if the intended use of such is or not 
compromised. Either option will help circumvent 
the need for expensive testing. On the Q10 
system, hundreds of heterogeneous sensing 
modalities are monitored to ensure the machine 
operation. Amongst them, for in-situ quality 
control, the ARCAM Q10 machine is equipped 
with a near-infrared sensitive camera capturing 
an emissivity map of the powder bed once a layer 
is completed. Each image (see Figure 1) shows 

Figure 1: Near infrared image of the powder bed and 
close-up view of defects of interest. 

http://www.arcam.com/technology/products/arcam-q10/
https://www.youtube.com/watch?v=M_qSnjKN7f8


variations in pixel intensities as a function of temperature, variations indicative of the presence 
of a feature of interest. 
 
The dataset provided was created using the Dream3D open source platform. It includes an 
HDF5 file with the extension “.dream3d” and “.xmdf” files that can be used in Paraview to 
visualize the data. The dataset contains one data container per additive part, and each data 
container contains multiple attribute matrices, one for each modality of the digitized version of 
the build. For this challenge, we have only included two image modalities:  

- STL slices images: additive parts are printed by stacking up slices extracted from the 
source CAD file. We have recorded for each layer the corresponding slice, extracted at 
the desired height as a black and white image, where white regions correspond to the 
intended printed regions and black region should not be printed. Note: there is an 
antialiasing effect around the contours (at the transition black/white). 

- near infrared images: they represent the emissivity measurement at the end of the print 
for each layer. In Figure 1, porosity appears as bright dots of various sizes, the printed 
contours (white curvilinear shapes) are delineating homogeneous grey regions 
corresponding to the infill melt areas, form the unmelted black region. As a rule of 
thumb, any disturbance of the grey region corresponds to a defect. Going through the 
entire stack of NIR images one will notice that the grey value within a region is almost 
never the same throughout the height of a part. This is caused by the scan strategy 
optimization for each layer which make the electron beam visit the same area at 
different times when building up. As a result, the thermal emissivity varies, hence the 
change in measurement 

Each attribute matrix holds a stack of thousands of images registered in space. The dimensions 
of the 3D stack, its resolution and its position in space are recorded in the dream3d file. 
 

 
Figure 2: Example of expected result for a selected region of interest. (input data) images of the cross section of a cylinder in the 
NIR data and the corresponding STL slice, (expected output) the magenta line in the first two images represent the intended 
location of the contour (contour of the STL slice). A series of dots for each contour point was places inside and outside the melted 
contour to show the deviation between intent and execution. The final image shows the porosity map in this layer for this object.  

Challenge Questions: we are proposing five challenge questions, ranked by complexity: 
1- Delineate the inside contour of each part: for each part delineate the interior region 

with subpixel accuracy 
2- Detect and map all defects present in each part: identify non-uniform pattern in the 

melted region, without necessarily labeling them one of the aforementioned defects of 
interest. 



3- Detect and map porosity: porosity is one of the most critical defect to identify. Building 
upon question 2, implement a classification mechanism to distinguish between pores 
and the other defects 

4- Delineate the outside contour of each part: delineating the outside contour can be 
more challenging when two objects are close to each other. Your solution from question 
1 will most likely have to be adapted to achieve subpixel location of the outside contour. 

5- Implement a solution that can delineate the outside of each contour and map porosity 
for each layer with the computing time under one second: there is approximately 5 
seconds between the capture of the NIR image and the beginning of the next layer. In 
the scheme of a feedback loop control implementation, the detection of major defects 
should be completed before the next layer start in order to implement corrective 
actions. Therefore, the geometric accuracy assessment and porosity map should be 
completed in maximum one second, to leave time for the system reconfiguration. 

6- (optional) we will offer to benchmark the algorithm against at least one dataset from a 
similar build for which we have high resolution CT of the parts showing the exact 
location of pores. The results will be provided to the participant to include in their final 
submission. 
 

There are non-constraints on the type of technique to use to process the data, anything ranging 
from image processing, statistical analysis, machine learning, etc. is welcome. 
 


