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Abstract. The 2020 Smoky Mountains Computational Sciences and
Engineering Conference enlists research scientists from across Oak Ridge
National Laboratory (ORNL) to be data sponsors and help create data
analytics challenges for eminent data sets at the laboratory. This work
describes the significance of each of the seven data sets and their as-
sociated challenge questions. The challenge questions for each data set
were required to cover multiple difficulty levels. An international call for
participation was sent to students, and researchers asking them to form
teams of up to four people to apply novel data analytics techniques to
these data sets.
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1 Introduction

All the data analytics challenges we host represent real world problems in dif-
ferent areas of research. The 2020 challenge solutions could impact unsolved
questions in materials science, research on energy conservation in cities, geologi-
cal studies based on seismic data, research toward matching critically ill medical
patients and their physicians with the most helpful clinical trials of novel ther-
apeutics and research toward halting the spread of COVID19.

By requiring the challenge questions for each data set to cover multiple dif-
ficulty levels and by allowing students and experts to compete in separate cat-
egories we hope to draw in a diverse set of researchers and perspectives to help
solve these questions.
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The call for participation was broadly advertised and open to all interested
parties. It appeared in scientific and engineering newsletters such as HPC Wire,
and was spread by social media. Invitations to participate were also sent to sev-
eral university computer science department professors and users of Oak Ridge
Leadership Computing facility.

In addition to providing and serving the datasets for the challenges, organiz-
ers and data sponsors held an interactive webinar to explain the relevance of each
challenge task and describe the size and composition of its associated dataset.
Subsequently, three online Reddit.com forums were held in the two months be-
fore solutions were due, so participants could post questions about the tasks and
get answers from eachother and the data sponsors. Lastly, to accommodate the
student challenge competitors who may not have ever written a scientific paper,
the challenge organizers held a best practices in scientific paper writing webinar
the week before the solution papers were due.

In this work, each of the challenges has its own section wherein the authors of
the challenge describe the motivation and science behind the challenge, the data
and its origins, and the reasoning behind the individual challenge questions.

2 Challenge 1: Understanding Rapid Cycling
Temperature Logs from the Vulcan Diffractometer

Neutron scattering allows scientists to count scattered neutrons, measure their
energies and the angles at which they scatter, and map their final positions.
This information can reveal the molecular and magnetic structure and behavior
of materials, such as high temperature superconductors, polymers, metals, and
biological samples. The Spallation Neutron Source (SNS) facility at the Oak
Ridge National Laboratory provides the most intense pulsed neutron beams in
the world for scientific research and industrial development.

2.1 Background

The VULCAN diffractometer [1] is designed to understand the fundamental
aspects of material behaviors during synthesis, processing, and service. One of
the experiments conducted at SNS is designed to generate high intensity neutron
pulses for the study of materials, where, over the course of the measurement,
the temperature is varied as a function of time [2]. The overall purpose of the
neutron measurement is to understand the changes in structure of the material
as a function of temperature.

The experiment is conducted as follows: the sample is rapidly heated, then
the heat source is turned off allowing the sample to relax and reach an equilib-
rium. Then the sample is rapidly heated again and the experiment is repeated
several times. The goal is to associate neutron events occurring within a certain
temperature bin. An event is defined as follows: the event starts when the sam-
ple is subjected to rapid heating and it ends right before the next rapid heating
occurs. This is called a heat cycle.
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2.2 Dataset

The VULCAN Beamline dataset [4] provides the sample measurement, where
temperatures are recorded in two physically different places on the sample. These
are held in two different hdf5 groups in the data file. Figure 1 depicts Tempera-
ture (in Celsius) vs. time (in seconds), a sample measurement on the VULCAN
[3] beamline. The total size of the data is 1.06 MB and a and a laptop, worksta-
tion or small cluster should be suitable for developing solutions to this challenge.

Fig. 1. Temperature vs. time on the VULCAN Beamline

2.3 Challenges of Interest

These questions seek insight into the behavior of the sample as the temperature
is varied.

1. The goal is to identify heat cycles pertaining to equivalent temperatures
during the same heating or cooling phase. For example, two data points at
800C are in the same group only if both of them are in either the heating or
cooling cycle. To that end, you need to identify the beginning and end times
of the heat cycle and temperature group it needs to belong to. (The latter
part could be thought of as a clustering problem.)

2. How many events are there in each group and how similar are the identified
events? A sample input to the question could be attributes of the heat cycle
like height, step size etc.

3. Once the heat cycles are identified, how do they vary from one event to the
next? A visualization would be great help showcase this variation.
Note: The dataset consists of two sample measurements that are highly
correlated with each other. We suggest the second measurement be used as
a validation set.
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3 Challenge 2: Towards a Universal Classifier for
Crystallographic Space Groups

3.1 Background

State of the art electron microscopes produce focused electron beams with atomic
dimensions and allow to capture diffraction patterns arising from the interaction
of incident electrons with nanoscale material volumes. Backing out the local
atomic structure of said materials requires compute- and time-intensive analyses
of these diffraction patterns (known as convergent beam electron diffraction,
CBED). Traditional analyses of CBED requires iterative numerical solutions of
partial differential equations and comparison with experimental data to refine
the starting material configuration. This process is repeated anew for every newly
acquired experimental CBED pattern and/or probed material.

3.2 Dataset

In this data, we used newly developed multi-GPU and multi-node electron scat-
tering simulation codes on the Summit supercomputer to generate CBED pat-
terns from over 60,000 materials (solid-state materials), representing nearly every
known crystal structure[5]. The overarching goals of this data challenge are to:
(1) explore the suitability of machine learning algorithms in the advanced analy-
sis of CBED and (2) produce a machine learning algorithm capable of overcoming
intrinsic difficulties posed by scientific datasets.

The dataset is split across multiple HDF5 files and an accompanying Jupyter
Notebook provides a detailed description on how to navigate the file structure to
access the data samples and the associated materials properties. Briefly, a data
sample from this data set is given by a 3D array formed by stacking three CBED
patterns simulated from the same material at three distinct material projections
(i.e. crystallographic orientations). Each CBED pattern is a 2D array (512 ×
512 pixels) with float 32-bit image intensities. The dataset is 589 GB and a
workstation or small cluster should be suitable for developing solutions to this
challenge.

Associated with each data sample in the data set is a host of material at-
tributes or properties which are, in principle, retrievable via analysis of this
CBED stack. These properties consist of the crystal space group the material
belongs to, atomic lattice constants and angles, chemical composition, to name
but a few. Of note is the crystal space group attributed (or label). All possible
spatial arrangements of atoms in any solid (crystal) material obey symmetry
conditions described by 230 unique mathematical discrete space groups.

3.3 Challenges of Interest

The data challenge tasks revolve around developing and implementing a ma-
chine learning (ML) algorithm to predict a material’s space group, essentially
a classification task. The data set is, however, heavily imbalanced (i.e. number
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of data samples per class). This imbalance is not an artifact, instead it reflects
the reality that most known materials have low symmetry and as such are not
uniformly distributed across the 230 space group classes.
The challenges are:

1. Perform exploratory data analysis on both CBED patterns and materials
properties to summarize data characteristics.

2. Develop an ML algorithm for space group classification of CBED data.
3. Implement proper ML techniques to overcome data/label imbalance and

show how it affects the performance of the ML algorithm in (1).
4. Implement an ML algorithm for multi-task prediction of a space group in

addition to other material structural properties and show how it affects the
performance of the ML algorithm.

Notes on challenge tasks

1. Preliminary task (1) is meant to provide better understanding about both
input data (e.g. principle components of input images) and targets (e.g.
distribution of space groups).

2. A participant may choose to solve challenges (1), (2) and (3), or (1), (2) and
(4). Solving all 4 questions is optional.

3. Regarding approaches to (2), our preference is for ML techniques (e.g. loss-
weighting, model ensembles, active learning, decision boundary analysis with
GANs, etc.,), in lieu of brute-force data augmentation approaches (e.g. mixup,
random erasing, etc. . . ).

4. If a deep learning model is used by the participant, our preference is for the
implementation use one of the following three frameworks: MXNet, Pytorch
or TensorFlow.

5. Our preference is for the ML algorithms be implemented in one of the fol-
lowing languages: Python, C, C++, and/or Julia.

4 Challenge 3: Impacts of Urban Weather on Building
Energy Use

4.1 Background

Recent advances in multi-scale coupling of high-performance computing models
provide unique insights into how interdependent processes affect one another.
Some of these processes are uniquely observable in urban environments. This
data challenge addresses questions at the intersection of the natural environment
and urban infrastructure by encouraging participants to examine variations in
weather and building energy use, seasonal influences, and the building types
most sensitive to weather at daily, monthly, and yearly scales. The dataset for
this challenge was generated under a Laboratory Directed Research and Devel-
opment project aimed at examining the impact of an area’s built environment on
weather and energy use. Data includes a year of simulated weather data taken
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at 15-minute intervals in a section of downtown Chicago; the latitude/longitude
location for each building in the study area, each building’s 2D footprint and
height, and a year of building-by-building energy use simulation (EnergyPlus)
data run by Joshua New, Mahabir Bhandari, Som Shrestha (ORNL, Energy
and Environmental Sciences Directorate), and Mark Adams (ORNL, National
Security Sciences Directorate).

4.2 Dataset

The dataset [6] comprises of three elements:

1. High resolution, 90m simulated weather data for 1 year at 15-minute intervals
(with known gaps toward the end of each month). These files are provided
in a comma separated value (CSV) format.

2. A mapping of individual buildings with individual IDs, their latitude/longitude
location, and height (provided in Excel file).

3. Energy simulation output of these individual buildings, at 15-minute inter-
vals for one year (provided in java script object notation (JSON) and other
files).

The total data set is 6.35 GB and a laptop, workstation or small cluster should
be suitable for developing solutions to this challenge.

4.3 Challenges of Interest

The questions that are of interest for this challenge are:

1. Are there interesting variations in weather and building energy use data for
the geographic area?

2. Which buildings in the study are most sensitive to weather (e.g., tempera-
ture, humidity, wind, radiation) effects?

3. Are there any interesting visualizations that illustrate the changing dynamics
of the simulated urban environment?

4. How can the data best be divided into subsets for meaningful analysis and
visualization?

5. How does energy use in each building change through the year?
6. How is energy use different during the coldest and hottest months (e.g.,

January and July) of the year as compared to during those of less extreme
temperature?

Participants are welcome to bring in additional datasets to combine with the
provided data to create meaningful insights.

We look forward to presentations using novel methods for interpreting and vi-
sualizing this data that draw on machine learning and other big data techniques.
We welcome new collaborations to complement the work of understanding cli-
mate, infrastructure, and energy use in urban areas from a systems perspective.
We hope the participants enjoy the interdisciplinary nature of the dataset and
its challenges.
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5 Challenge 4: Computational Urban Data Analytics

5.1 Background

Urban environments are complex systems in which social factors, mobility, build-
ing energy, and urban climate interact with each other. Large parts of urban
energy use are driven by the movement of population through the city. Each
day, humans consume energy, whether they are traveling, at home, or in their
workplace. Transportation and building energy are two of the top consumers of
energy use in the United States. Transportation accounts for 29% of energy use,
whereas buildings account for 38-40% of energy use (combined residential and
commercial) [25] [26].

There are many factors that influence energy use in any particular building,
but one of the major contributing factors is the number of occupants. In this
challenge, we provide data that can help model the population’s behavior and
decision making, and obtain a more accurate representation of energy use in
buildings, which nicely builds upon our previously published work [7], where
we developed a data-driven transportation model, which determines building
occupancy throughout the day in order to create more accurate simulations for
building energy.

5.2 Dataset

Due to the tightly coupled nature of urban systems, we provide a wide variety
of data for this challenge. All data is from 2017 (or based on 2017 inputs in
case of simulations) unless noted otherwise. We hope that with this breadth of
available data, every challenge participant will find an area they are particularly
passionate about, however it is not a requirement to use all provided data. The
size of the dataset is about 2 GB unzipped and a laptop, workstation or small
cluster should be suitable for developing solutions to this challenge.

Vehicle data Vehicle data provides information on the population’s daily trips
as well as vehicle types from survey data. It is a simulation snapshot of a trans-
portation simulation that was based on surveyed data.

1. Simulation snapshot for morning commute from TRansportation ANalysis
SIMulation System (TRANSIMS): This snapshot contains vehicle traces (in
Universal Transverse Mercator Coordinates) at 30-second intervals for one
simulated day. At each time step, we also have the link (road segment) ID,
driver ID, and vehicle speed.

2. Schedule for morning commute from National Household Travel Survey (NHTS):
This is an extract of the official NHTS data [8] which only contains survey
responses from Chicago.

3. Vehicle type distribution: Simplified Federal Highway Association (FHWA)
classifications of vehicles in Chicago, which was derived from NHTS data.
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Emissions data To study emissions, we are providing traffic volumes and emis-
sions that were generated using an emissions simulation, by using the traffic
simulation outputs. In addition, we provide weather data to enable the study of
relations between weather and emissions.

1. Road-level traffic volumes (aggregated from TRANSIMS outputs).
2. Road-level emissions generated using MOVES, an emissions simulator. This

simulation is based on traffic volumes and weather patterns throughout a
year.

3. Weather data from DarkSky. For this data, we provide instructions on down-
loading it, as it is free to use but the license agreement does not allow redis-
tribution.

Road network A transportation-focused dataset would not be complete with-
out the road geometry. We provide the road network that was used for the
simulations, along with some metadata.

1. The road network has the link IDs for each road segment, as well as road
type etc.

2. GeoJSON file of the road network used for the TRANSIMS and MOVES
runs.

3. Definition of different link types.

Building data We provide building footprints and socioeconomic data to pro-
vide a better idea of population distribution and demographics, and the type
and distribution of buildings throughout the area.

1. Building footprints from Microsoft (2019): All US building footprints [9] and
the clipped version for Chicago [10].

2. Land Use data from Chicago Metropolitan Agency for Planning (CMAP):
GeoJSON file containing polygon data with land use attributes and a Code-
book defining the land use codes
(a) Socioeconomic data is provided for different community areas (neighbor-

hoods, such as “Chicago Heights”) [12]:
i. Population from CMAP/Census (2010).
ii. Census data summarized to community areas [11].

iii. Spreadsheet (CSV) of census data by community area.
iv. GeoJSON of community area polygons.

(b) Community Area Snapshots contain additional information such as em-
ployment, travel mode choice, housing types, job types in community
(held by residents, available in community), walkabilty, etc.[12].

i. Spreadsheet (CSV) of Community Area Snapshot data.
ii. Data dictionary explaining the different fields.

Each of the folders in the provided dataset has a README file with more
detailed information on file format and contents.
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5.3 Challenges of Interest

One of the main challenges in coupled or integrated systems is the disparity of
data sources. For this data challenge, we would like participants to address one
of the three following tasks:

– Develop an algorithm to efficiently assign vehicle occupants to nearby build-
ings.

1. In [7], we have performed an initial weighted quad tree-based approach
to map vehicles to buildings.

2. The ideal algorithm should be efficient and accurate. Consider the trade-
off.

3. The resulting mapping should be realistic. Consider building size, use
type (the vehicle traces are only for commute) etc.

– Perform an area-wide correlation analysis of vehicle emissions.
1. Determine spatial variation, and variation based on other factors, such

as land use of surrounding areas, population, network classification (road
type), weather, etc.

2. Correlate the provided emissions data with other provided datasets.
– Characterize traffic patterns from the simulation.

1. What are the traffic hot spots? Is there any congestion?
2. What are the travel times? How do they vary through out the day?
3. What are busy times? How well do they match the commute pattern

from NHTS?
4. How do speeds vary spatially and temporally?
5. What are the most popular roads?
6. Can you draw conclusions about the simulation setup from the output?

We hope that the wide range of questions will provide an interesting challenge
for every participant. If participants have their own unique ideas based on using
the data we provided, this will also be of interest.

6 Challenge 5: Using Machine Learning to Understand
Uncertainty in Subsurface Exploration

In the energy industry, an understanding of subsurface characteristics and struc-
ture is crucial to identifying and localizing untapped resources. At a high level,
the process of taking an entirely unexplored region of earth and generating an
actionable understanding of its structure includes:

1. Seismic data collection: Collect raw signals from the subsurface using tech-
niques similar to sonograms used in hospitals.

2. Seismic data pre-processing: Quality check and clean the collected raw sig-
nals.

3. Seismic migration and velocity model construction: Use the raw signals and
our understanding of the likely geology of the region to construct a 3D
representation of the subsurface.
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4. seismic interpretation: Using the constructed 3D representation, interpret
where faults, layers, and other important structural features are in the sub-
surface.

With each of these steps comes an amount of uncertainty from various sources
of potential error: instrument error, human error, modeling error, and more.
Despite this, the output of most seismic processing workflows is a single, gold
standard, output image. An image which we know cannot possibly be 100%
accurate!

It is crucial that future seismic processing workflows start to incorporate
uncertainty when estimating the true subsurface structures. Rather than out-
putting a single interpretation, we should aim to emit a spectrum of possible
realizations and an understanding of where uncertainty is high or low.

6.1 Background

Seismic Data Collection Seismic data collection (i.e., the process of conduct-
ing a seismic survey) involves transmitting powerful sound waves into the ground
and then recording their echoes at the surface as they bounce off boundaries be-
tween layers in the Earth. This process parallels techniques used in x- ray and
ultrasound imaging in the medical field to reconstruct structures inside the hu-
man body. The figure below depicts a typical offshore seismic survey setup, in
which sound waves are transmitted from an air gun behind a survey ship and the
return echoes are recorded by a line of hydrophones being towed behind the ship.

During a seismic survey, one or more sources of sound energy are used to trans-
mit waves into the ground. One or more receivers are used to record the reflection
of that sound energy at the surface. The raw output generated from a seismic
survey is a set of recorded waveforms at each receiver for each source. This
recording stores the amplitude of the reflected sound wave at the surface as a
function of the time it took to travel to the receiver.

Seismic Data Preprocessing Pre-processing of our raw seismic data can
include a multitude of steps. Broadly, seismic preprocessing aims to clean up
and strengthen signals in the seismic data while reducing noise, facilitating later
stages of the seismic processing pipeline.

Seismic Migration and Velocity Model Construction Seismic migration
refers to the process by which the seismic waves received at receivers are back-
propagated to the source through a simulated version of the seismic medium.
Through knowledge of (1) the source location, (2) the receiver location, (3) the
time/amplitude of the received signal, and (4) the medium through which the
signal traveled, we can simulate in reverse the propagation of the signal through
the subsurface, identify its reflection point, and thereby identify the location of
a potential object/reflector of interest in the subsurface.
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Fig. 2. Seismic Survey[13]

Note how crucial an accurate estimate of the subsurface velocity of sound
waves is in this process. Without an accurate velocity estimate, it is impossible
to accurately predict the distance traveled by sound waves in the subsurface in
a certain period of time.

While building a velocity model is a critical component for accurate seismic
reconstruction, a number of uncertainties are involved in the process. Simply
asking two different geophysicists to perform velocity model construction on the
same seismic traces can produce drastically different velocity models. Quantify-
ing and visualizing this uncertainty in velocity models will be the prime focus
of this data challenge.

One common practice for checking the validity of a given velocity model
is through offset pair gathers. Modern seismic surveys generally involve many
sources and many receivers. As a result, many pairs of sources and receivers
capture reflections off the same reflector in the subsurface (see Figure 3). This
redundancy can be helpful in validating the quality of a velocity model, as an
accurate velocity model is expected to produce similar/identical depth estimates
for a given reflector no matter which offset pair a reflection is received from.

Gathers generally refer to collecting the depth estimate for a given reflector
across many offset pairs and plotting them visually, with depth on the y axis
and offset pairs along the x axis. In a gather of an accurate velocity model,
geophysicists expect to mostly see horizontal lines, indicating that the depth
estimate for a layer is the same across all offset pairs. See Figure 4 for several
examples of reasonable gathers, indicated by the prevalence of horizontal lines.
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Fig. 3. Many pairs of sources and receivers capture reflections off the same reflector in
the subsurface.

Fig. 4. Reasonably good gathers show mostly horizontal lines, indicating that the depth
estimate for a layer is the same across all offset pairs.

Seismic Interpretation Once a final seismic image is rendered following seis-
mic migration, seismic interpretation—the process of identifying faults, reser-
voirs, and other features of interest in the image—begins. This manual labeling
is then used in field development and reservoir characterization. See Figure 5 for
an example seismic image with faults manually labeled and emphasized.
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Fig. 5. A seismic image with faults manually labeled and emphasized[14]

Dataset The dataset included in this data challenge serves as a starting point in
exploring techniques for quantifying uncertainty in seismic processing workflows.
In this dataset we are focused on quantifying and visualizing the uncertainty
in our estimations of the density of the subsurface based on how varying those
estimates impacts our output 3D volume. At a high level, this dataset consists of
a set of synthetic but realistic models of the density of the subsurface, randomly
generated based on a single, known, synthetic ground truth. This dataset also
includes the final 3D realizations generated using those density models (also
called velocity models). These files are stored in the industry standard SEGY
format, and an example Jupyter notebook is provided to illustrate how to load
and visualize them.

A 3GB trial dataset is given to help competitors get started. The full dataset
is 49 GB. A laptop, workstation, or small cluster should be suitable for developing
solutions to this challenge.

6.2 Challenges of Interest

The end goal of this data challenge is to construct an uncertainty map for a
given seismic survey, labeling each pixel in a final 2D seismic image with a value
between 0.0 and 1.0 indicating how volatile the estimate for that pixel is.

However, we also welcome submissions that include any intermediate work
towards that end goal or answers to any of the below challenge questions. Even
if you are unable to complete the entire challenge, any submissions that show
progress towards this end goal and lay out ideas for how the challenge could
eventually be completed will be considered.
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1. Given that geophysicists generally use horizontal lines in gathers as a good
indicator of velocity model accuracy, build a model (analytical, mathemati-
cal, data-driven, or otherwise) to estimate the quality of each velocity model
based on its associated gathers.

2. Train a model to label each pixel with an uncertainty value between 0.0
and 1.0 indicating how uncertain any given realization of that part of the
subsurface is.

3. Generate a single uncertainty map given all of the velocity models, realiza-
tions, and gathers at hand.

4. Generate some form of visualization of this uncertainty map of the subsur-
face.

7 Challenge 6: Using Artificial Intelligence Techniques to
Match Patients with Their Best Clinical Trial Options

The Presidential Innovation Fellows, US Department of Veterans Affairs, and the
Oak Ridge National Laboratory Health Data Sciences Institute are coordinating
this Data Challenge, which draws on resources across a dozen federal agencies
and departments. The related project, Health Tech Sprint, emphasizes the need
for open federal data for artificial intelligence (AI) applications as defined by the
newly signed OPEN Government Data Act under the Foundations for Evidence-
based Policymaking Act (signed Jan 15, 2019).

7.1 Background

Novel therapeutics, such as those under development in clinical trials, are often
a treatment option for patients with serious and life-threatening diseases such as
cancer. Increasing patient awareness of clinical trials is believed to be a factor in
reducing time for participant recruitment, a very large cost category in clinical
trials. Thus, applying AI to help patients and their health care providers find
clinical trials of novel therapeutics may improve patient care and, by aiding in
recruitment, reduce drug development costs.

For AI to be useful in trial matching, both representative patient data and
clinical trial eligibility information, ideally in a structured format, are needed. In
addition, expert-based guidance on matching patients to trials, including which
criteria are matched, is useful for building and testing models.

The AI-able data ecosystem seeks to enable AI by bringing together an en-
semble of interlinked datasets with data suitable for AI in a given use case.
Having this information in the public domain enables standardization by facili-
tating testing across different approaches. This challenge features the first such
standardized dataset ensemble related to clinical trial matching, with the various
interlinked datasets provided.

7.2 Dataset

We provide three datasets to the data challenge participants
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1. A subset of eligibility criteria translated into machine-readable code from a
selected group of cancer clinical trials.

2. Records based on callers to the NCI’s Cancer Information Service that have
been enhanced with synthetic data and translated into machine-readable
code.

3. Participant records matched against clinical trials for which the eligibility cri-
teria and participant data were previously translated into machine-readable
code.

The size of the three datasets is 1.3 MB and a laptop, workstation, or small
cluster should be suitable for developing solutions to this challenge. A second
version of the third dataset, produced by oncology professionals, serves as a
comparison dataset for the matches identified through the application of AI.
For more information on the above datasets and potential approaches on usage,
please see reference [15].

In addition to the datasets provided, participants are encouraged to use other
publicly available datasets. For example, National Cancer Institute (NCI)-funded
cancer clinical trials, including API with annotations on disease eligibility criteria
for all trials, is available at https://clinicaltrialsapi.cancer.gov.

7.3 Challenges of Interest

Challenge tasks are listed below. However, participants are encouraged to suggest
and tackle challenge tasks different from those listed below. Innovative use of the
provided data is strongly encouraged.

1. Data representation

– Develop novel big data structures to represent the clinical trials and the
patient data that accommodate the interaction of the three datasets. The
ultimate goal is to support thousands of clinical trials being matched
with millions of people.

2. Algorithm development

– Develop novel algorithms for finding the most suitable matches between
patients and clinical trials.

3. Visualization/human computer interaction

– Develop visualization and/or human-computer interaction solutions to
enable medical providers to effectively leverage the data for clinical de-
cision support.

Notes on the Challenge Tasks

1. A participant may choose to do any question(s) they prefer. Completing all
three questions is optional.

2. Regarding approaches to question 2, our preference is to receive solutions
involving machine learning techniques.
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8 Challenge 7: The Kaggle CORD-19 Data Challenge

8.1 Background

As governments, policymakers, and scientists across the globe are racing to iden-
tify potential vaccines and drugs for SARS-CoV-2, many scientists hope the in-
formation needed to identify a vaccine lies in the millions of available research
documents. To support mining information from research literature, the White
House, along with leading industries, has made a dataset of research publications
directly related to the outbreak available to the general public [16]. Some of the
most important questions pertaining to the outbreak which were identified by
the US NASEM and the WHO, were published as part of a public challenge
along with the publication dataset on Kaggle [17].

8.2 Dataset

The entire body of scientific literature is growing at an enormous rate; it is cur-
rently estimated at over 100 million publications [20] with an annual increase of
more than 5 million articles. The publication set of coronavirus-related literature
provided for the Kaggle COVID-19 Open Research Data Challenge (CORD-19)
have been growing at a rate of thousands of new publications per year (Figure
8.2) and the growth has nearly doubled since the start of the current epidemic.
Thus, it is not only difficult for scientists to source inspiration and new insights
from their own domains, but also other adjacent domains. Since comprehensive
reading of the growing scientific literature is now beyond the capacities of any
human being, artificial intelligence techniques, including natural language pro-
cessing and text mining, offer the potential to intelligently parse large bodies
of loosely connected text to provide scientists solving some of the world’s most
pressing challenges with meaningful insights [23, 24, 22].

8.3 Challenges of Interest

To kick-start the development of such AI techniques, the Kaggle CORD-19 chal-
lenge lists some of the most important questions pertaining to the COVID-19
epidemic, which will require parsing and connecting information provided in the
available literature. This list of questions evolves as we learn more about the
virus and identify new questions which need to be answered, and includes ques-
tions about symptoms, risk factors such as pre-existing conditions, and vaccines
and therapeutics currently under investigation. However, answering some of the
questions may require going beyond existing CORD-19 publication set. What if
an existing vaccine developed for another disease has a potential to also work for
COVID-19, but hasn’t as of yet been mentioned in COVID-19 related literature?
Expanding beyond just the directly relevant literature exacerbates the need for
AI techniques.

We invite submissions describing complete or partial solutions to any of the
Kaggle CORD-19 Tasks to SMCDC for consideration for a best solution paper
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Fig. 6. Growth of papers in the CORD-19 dataset. Figure from [21].

award, poster presentation, and publication in the conference proceedings. The
SMCDC poster session will give selected researchers perusing the CORD-19
dataset a place to present their work and discuss it with other researchers.

9 Conclusion

In addition to contributing to the solutions of open research questions, we hope
these challenges gave participants a taste of the types of data and modeling
problems in each of the scientific areas featured in the 2020 Data Challenge.
We also hope these challenges got researchers thinking about how important
and difficult it is to account for uncertainty and probability in large scientific
datasets.

In total, 52 teams competed to solve the seven data challenges. Of those, 23
teams submitted solution papers. The best solutions were selected for publication
by a peer review.

About 90 percent of the finalists identified themselves as students. According
to studies in educational psychology such as [18] and [19], novel intellectual
challenges, like those posed by the 2020 Data Challenge, can be highly motivating
and promote deeper engagement in tasks and lead to longer-term persistence in
academic pursuits like research.

10 Acknowledgements

This research used resources of the Compute and Data Environment for Science
(CADES) at the Oak Ridge National Laboratory, which is supported by the



18 ORNL et al.

Office of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725”

This research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-
AC05-00OR22725.

References

1. https://neutrons.ornl.gov/vulcan
2. Granroth, G.E., An, K., Smith, H.L., Whitfield, P., Neuefeind, J.C., Lee, J., Zhou,

W., Sedov, V.N., Peterson, P.F., Parizzi, A., and Skorpenske, H., 2018. Event-based
processing of neutron scattering data at the Spallation Neutron Source. Journal of
Applied Crystallography, 51(3).

3. Wang, X.L., Holden, T., Stoica, A.D., An, K., Skorpenske, H.D., Jones, A.B., Ren-
nich, G.Q., and Iverson, E.B., 2010. First results from the VULCAN diffractometer
at the SNS. In Materials Science Forum (vol. 652, pp. 105–110). Trans Tech Publi-
cations.

4. Niyanth. S, Noyan I.C., Seren, M.H., and An, K., Vulcan Beamline dataset. Partly
supported by the US Department of Energy (DOE) Office of Energy Efficiency and
Renewable Energy, Advanced Manufacturing Office program. This research used
resources at the SNS, a DOE Office of Science User Facility operated by Oak Ridge
National Laboratory. doi:10.13139/ORNLNCCS/1604074

5. Laanait, N., Borisevich, A., and Yin, J., A Database of Convergent Beam Electron
Diffraction Patterns for Machine Learning of the Structural Properties of Materials.
doi:10.13139/ORNLNCCS/1604074

6. Allen-Dumas, M., New, J. Chicago microclimate and building energy use data doi:
10.13139/ORNLNCCS/1619243

7. Berres, A., Im,P., Kurte, K., Allen-Dumas, M., Thakur, G., Sanyal, J.: A Mobility-
Driven Approach to Modeling Building Energy. 5th IEEE Workshop on Big Data
Analytics in Supply Chains and Transportation. Los Angeles (2019).

8. https://nhts.ornl.gov/
9. Microsoft building footprints https://github.com/Microsoft/USBuildingFootprints
10. https://usbuildingdata.blob.core.windows.net/usbuildings-v1-1/Illinois.zip
11. 2010 Census data for Chicago community areas https://datahub.cmap.illinois.gov/

dataset/2010-census-data-summarized-to-chicago-community-areas
12. https://datahub.cmap.illinois.gov/dataset/community-data-snapshots-raw-data
13. https://krisenergy.com/company/about-oil-and-gas/exploration/
14. https://www.geoexpro.com/articles/2016/01/super-high-resolution-seismic-data-

in-the- norwegian-barents-sea”
15. https://digital.gov/2019/02/27/how-a-health-tech-sprint-inspired-an-ai-

ecosystem.
16. https://www.whitehouse.gov/briefings-statements/call-action-tech-community-

new-machine-readable-covid-19-dataset/
17. https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-

challenge/tasks
18. Csikszentmihalyi, M. Flow: The psychology of optimal experience. New York:

Harper Perennial (1990).
19. Shernoff, D. J., and Hoogstra, L. Continuing mo- tivation beyond the high school

classroom. New Direc- tions for Child and Adolescent Development, 93, 73-87
(2001).



Data Challenge 19

20. Khabsa, Madian, and C. Lee Giles. ”The number of scholarly documents on the
public web.” PloS one 9, no. 5 (2014).

21. Wang, Lucy Lu, Kyle Lo, Yoganand Chandrasekhar, Russell Reas, Jiangjiang
Yang, Darrin Eide, Kathryn Funk et al. ”CORD-19: The Covid-19 Open Research
Dataset.” ArXiv (2020).

22. Wang, Kuansan, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. Microsoft Academic Graph: When experts are not enough.
Quantitative Science Studies 1 (1): 396-413 (2020).

23. Wade, Alex D., and Kuansan Wang. ”The rise of the machines: Artificial intelli-
gence meets scholarly content.” Learned Publishing 29, no. 3 (2016): 201-205.

24. Saggion, Horacio and Ronzano, Francesco. Scholarly data mining: making sense of
scientific literature. 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL):
1–2 (2017).

25. U.S. Energy Information Administration. Use of energy in the United States –
Energy explained. https://www.eia.gov/energyexplained/index.php

26. DOE Office of Energy Efficiency & Renewable Energy efficiency trends in residen-
tial and commercial buildings. http://www.osti.gov/servlets/purl/1218835/


