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Atomic force microscopy (AFM) is a premiere research tool utilized to explore material 
behavior at the nanoscale and has been a mainstay of nanoscience in the past three 
decades. It consists of a tip at the end of a cantilever that interacts with a sample to 
derive information on the sample properties and correlate the functional properties to 
microstructural features of the sample.  Usually, in addition to regular raster-based 
scanning for high-resolution images of topography, the AFM enables individual point-
based spectroscopy, where stimulus is applied to the tip or sample or environment and 
the response of the material is measured locally. Typically, the spectroscopy can be 
time consuming, as each pixel can take from ~0.1 to ~10s to acquire, and this has to be 
repeated across a grid of points to determine the response variability on spatially 
heterogeneous samples. One example is in measuring the relaxation of piezoelectric 
response in ferroelectric materials, as shown in our recent work (Kelley et al. npj 
Computational Materials 6, 113 (2020)).  

In this data, we acquired the piezoelectric response as a function of voltage, time and 
space in a 200nm thick ferroelectric film of PbTiO3. Such data is critical to 
understanding the role of domain walls in enhancing the piezoelectric and dielectric 
properties of ferroelectric materials. The results are provided as a h5 file with tensors for 
the response and vectors for the applied voltage. These measurements are time 
consuming and difficult. One method to reduce the time is to instead explore active 
learning strategies, where only specific voltages and/or spatial locations are measured, 
and then the full response ‘reconstructed’ from this subset of measurements. 
Determining where to sample to optimize the reconstruction becomes an optimization 
problem which lies at the heart of this challenge. The dataset is of size (60,60,16,128) 
where the axes are (x,y,Voltage, time). The full details are available in the manuscript. 

The data challenge questions revolve around developing and implementing a machine 
learning (ML) or statistical learning algorithm to best guide the instrument as to where to 
sample based on an existing subset to optimize the reconstruction, i.e., ‘active learning’. 
Here, some subset of data is first captured, and then a set of new measurement 
conditions (e.g., certain spatial pixels) are given by the algorithm to sample next. The 
microscope captures that data, the new data is fed back into the algorithm to guide the 
next points, and so on until enough data is captured that is sufficient for a high quality 
reconstruction with sparse sampling. 

Challenge Questions 

The challenges are: 



1. Perform reconstruction of the dataset based on different image reconstruction 
techniques (e.g., Gaussian process regression) in high dimensional spaces, to 
observe how redundant the information in the dataset is. 

2. Develop an ML algorithm for optimized sequential sampling of the 
multidimensional dataset.  

3. Implement the algorithm in a workflow, as if the microscope was actually taking 
datapoints, to showcase the method 

4. Ensure that the method (a) reconstructs the true dataset to some tolerance (e.g., 
90%), and that there is at least a 25% gain in efficiency (i.e., less number of 
spatial and or voltage/time points that need to be measured).  

Notes on the challenge questions: 

• The preference is for the code to be written in python, but other languages are 
not forbidden 

• For (1), explore how much of the voltage, time and spatial data can be eliminated 
safely without dramatic loss in reconstruction accuracy 

• Note that the efficiency gain needs to take into consideration algorithm running 
time on a dgx-2 machine for every iteration, because algorithms that take longer 
than several iterations of the actual full spectroscopy will not be useful to the 
instrument user.  

• The successful algorithm will be deployed at the CNMS for a real experiment. 
Note that high use of GPU acceleration is desired given the availability of the 
dgx-2 system at the CNMS. 


